新闻公告
新闻公告
当前位置:首页  新闻公告
美国特拉华大学李文博教授讲座通知
发布人:系统管理员  发布时间:2012-07-30   浏览次数:509

受学校国际合作与交流基金资助,应我校理学院院长吴林志教授的邀请,美国特拉华大学李文博教授于2012年7月28日至8月3日在我校进行短期访问讲学。讲座报告题目、时间和地点如下,欢迎理学院、计算机科学与技术学院、经济与管理学院及全校有关教师、博士生、硕士生参加!

时间:2012年8月1日(周三)上午9:00--11:30

地点:2138cn太阳集团古天乐格物楼503
 
 
题目:
1.Probabilities of all real zeros for random polynomials
2.Small deviation (ball) estimates for sums of correlated Gaussian elements
 
 
专家简介:
Education Information:
Mathematics, University of Wisconsin-Madison, May 1992 University
Work Experience:
Full/Associate/Assistant Professor, Dept. of Mathematical Sciences, Univ. of Delaware, Sep. 1992-1996, 1996-2002, 2002-present.
Adjunct Professor, Dept. of Electrical and Computer Engineering, College of Engineering, Univ. Delaware, Jan. 1, 2011--present
Visiting Professor, Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, Summer of 2005-present.
Adjunct Professor, Department of Applied Mathematics and Theoretical Physics, Delaware State University, 2007-present.
Member, Creative Research Group(CRG), Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 2007-present.
Visiting Professor, Department of Mathematics, Hong Kong University of Science and Technology, Feb.-March, 2007.
Visiting Professor, School of Mathematics, Peking University, July-Aug. 2005, June-July and Sep.-Nov. 2006, March-April 2007.
Visiting Professor, Dept. of Statistics at Wharton School, University of Pennsylvania, Sep. 1996--May 1997, Sep. 1999--May 2000.
NSF Young Investigator, Texas A/&M University, Summer of 1994, 1995.
 
Research Interests:

Stochastic modelling and analysis in sciences (mathematics, statistics, computation, biology, finance, engineering, networks); Gaussian processes and applications of Gaussian methods; Gaussian Random and Free Fields; Small deviation/value probabilities; Probability estimates for exit/survival/crossing time; Boundary crossing probabilities with applications to sequential analysis; Stochastic and combinatorial optimization/algorithm; Random polynomials and matrices; Stochastic inequalities; Simulation; Probabilistic methods; Probability on Banach spaces and geometric functional analysis; Stochastic partial differential equations and random dynamics.